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Abstract: The estimation of site water budget is important in Mediterranean areas, where it represents
a crucial factor affecting the quantity and quality of traditional crop production. This is particularly
the case for spatially fragmented, multi-layer agricultural ecosystems such as olive groves, which
are traditional cultivations of the Mediterranean basin. The current paper aims at demonstrating
the effectiveness of spatialized meteorological data and remote sensing techniques to estimate the
actual evapotranspiration (ETA) and the soil water content (SWC) of an olive orchard in Central
Italy. The relatively small size of this orchard (about 0.1 ha) and its two-layer structure (i.e., olive
trees and grasses) require the integration of remotely sensed data with different spatial and temporal
resolutions (Terra-MODIS, Landsat 8-OLI and Ikonos). These data are used to drive a recently
proposed water balance method (NDVI-Cws) and predict ETA and then site SWC, which are assessed
through comparison with sap flow and soil wetness measurements taken in 2013. The results obtained
indicate the importance of integrating satellite imageries having different spatio-temporal properties
in order to properly characterize the examined olive orchard. More generally, the experimental
evidences support the possibility of using widely available remotely sensed and ancillary datasets for
the operational estimation of ETA and SWC in olive tree cultivation systems.
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1. Introduction

Actual evapotranspiration (ETA) is a key parameter of the Earth’s hydrological cycle linked to
mass and energy exchanges, knowledge of which is fundamental for environmental, economic and
social analysis at different spatial and temporal scales [1,2]. An accurate quantification of ETA is critical
for water use efficiency evaluation and, consequently, enhancement in agriculture, forestry and local
resource management [3]. This is particularly relevant in semi-arid environments, where information
on water consumption rates can play a significant role in local policy-making process [4,5]. At present,
the Mediterranean region could save 35% of water by implementing more efficient irrigation and
conveyance systems, in particular for agricultural trees, which consume more water than annual
crops [6]. Moreover, recent studies have shown that climate change can affect the water needs
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of traditional Mediterranean crops, increasing temperature and transpiration as well as increasing
duration and intensity of dry periods [6–8].

In the last few years, innovative approaches have been developed to improve ETA detection
and quantification, using space, air or ground-based instrumentation [9,10]. Although some of
these approaches can potentially improve traditional measurement systems, in particular reducing
costs for data acquisition, management and delivery [11], one of the main problems remains the
degree of precision of the provided estimation [12,13]. In general, Earth Observation (EO) techniques
represent an efficient tool to obtain relatively frequent, low-cost updating of information at different
temporal and spatial scales. These techniques provide increasingly satisfactory spatial and temporal
coverage, offering good solutions for meeting cross-sectoral needs [14,15]. A comprehensive review
of the available EO techniques developed to estimate ETA in different contexts can be found in [16].
Novel approaches range from simple empirical to physically-based methods, such as land surface
models [17,18]. Unfortunately, most of these methods require high computational power and technical
expertise for their parameterization and/or local downscaling [1], limiting their use to a restricted
community of final users.

Recent research has, therefore, focused on the development of operational EO products to
monitor ETA at continental or global scales [19,20]. Data sources for operational ETA estimation,
utilizing sun-synchronous polar orbiting satellites, have included the Moderate Resolution Imaging
Spectroradiometer (MODIS) product [21]. Within this research line Maselli et al. [22] have proposed a
new operational water balance method based on the combination of MODIS Normalized Difference
Vegetation Index (NDVI) and meteorological data (NDVI-Cws), which overcomes most limitations of
preceding approaches. The method was successfully applied to predict the ETA of various vegetation
types, including forests and annual crops, in Central Italy.

The introduction of the NDVI-Cws method, as well as the use of spatial information to guide
more detailed analyses, is potentially useful to monitor the water requirement of Mediterranean
semi-arid agricultural systems [11]. The approach, however, has not been tested in rainfed multi-layer
agricultural ecosystems, such as olive groves and vineyards, that are widely cultivated in the
Mediterranean basin [23]. Olive groves, in particular, need efficient tools to provide practically
useful advices to farmers, starting from a limited number of basic information and datasets [24,25].
Unfortunately, a reliable quantification of the evapotranspiration rate is complex in these woody
crops, due to a number of environmental and technical factors [26,27]. Olive groves are, in fact,
composed of variable proportion of trees and grasses and are grown following extremely diversified
agricultural practices [23]. In spite of this, Marino et al. [28] observed that NDVI is informative on the
photosynthesis as well as on the stomata conductance and leaf water potential of olive plants, under
wet and dry regimes.

The NDVI-Cws method is therefore potentially useful for monitoring the water resources of
Mediterranean olive groves. To reach this objective, however, the method should be adapted to
cope with the spatially fragmented, two-layer structure of these groves. Contemporaneously, the
method should be fed with widely available conventional and remote sensing datasets, without the
need for a site-specific calibration which would limit its operational applicability. The current paper
aims at evaluating this possibility using an experimental olive orchard in Central Italy. The proper
characterization of this orchard requires the integration of remote sensing data with different spatial
and temporal resolutions (i.e., MODIS, Landsat 8-OLI and Ikonos imagery). The olive tree transpiration
estimates are first evaluated against daily sap flow measurements taken during part of the examined
growing season (2013). Then, the ETA estimates of trees and grasses are combined with precipitation
data to obtain a simplified site water balance, which is assessed through comparison with daily
measurements of soil water content (SWC).
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2. Materials and Methods

2.1. Study Area

The study was conducted on an experimental olive orchard (Olea europaea L., cv. Leccino) situated
in an agricultural area near Follonica, Tuscany (Central Italy, 42◦55′58”N, 10◦45′51”E; 17 m a.s.l.)
(Figure 1). The area shows a typical sub arid Mediterranean climate with a mean annual air temperature
of 16 ◦C. January is the coldest (9 ◦C) and July the warmest month (24 ◦C) and the mean diurnal
thermal range is 9–10 ◦C. The mean annual precipitation is 650 mm, mostly concentrated in autumn
and spring, while in summer precipitation is very scarce. Soil has a total depth of about 3 m; its surface
layer (about 0.5 m) is silty loam, with a low amount of organic matter.
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Figure 1. Landsat OLI frame of Tuscany taken on 16 June 2013 with position of the study area; the top
left box shows the position of the frame in Italy, while the top right box shows a Google Earth IKONOS
pan-fused image of the examined olive orchard taken on 5 June 2013.

This olive orchard has been the subject of numerous studies, during which it has been fully
characterized from an eco-physiological point of view (e.g. [28,29]). The orchard is mostly surrounded
by other olive groves having varying tree densities and ages and extends over an area of about 0.1 ha,
which was planted in 2003 with a 4 m × 4 m spacing [29]. In 2013, the mean height of the olive trees
was about 3 m (Figure 2). Inter-tree areas are generally covered by several herbaceous native species.
The olive orchard, usually grown in rainfed conditions, is managed with low intensity pruning of the
canopy performed in February every year, while the herbaceous coverage of the soil is controlled by
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three to four passages made by a lawn mower along the vegetative season. The natural grass coverage
results almost completely dried during the summer period.Remote Sens. 2016, 8, x FOR PEER  4 of 14 
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2.2. Datasets

The current study utilized two datasets. The first, composed of satellite images and spatialized
ancillary data, was used to drive the model applications; the second, composed of ground observations,
was used to assess the model estimates.

2.2.1. Model Drivers

Standard meteorological data (i.e., air temperature and precipitation) were retrieved from a
complete 1-km dataset of the Environmental Modelling and Monitoring Laboratory for Sustainable
Development (LaMMA Consortium, Tuscany Region). These data were interpolated from the regional
meteorological network applying the DAYMET algorithm [30].

Soil information on texture and depth was derived from the soil map of Tuscany produced by
Tuscany Regional administration (see http://sit.lamma.rete.toscana.it/websuoli/).

MODIS NDVI images of 2013 were freely downloaded in a pre-processed format from the USGS
database (http://lpdaac.usgs.gov). These images have a 250 m spatial resolution and are composited
over 16-day periods.

Landsat 8 OLI images were also freely downloaded in a pre-processed format from http://landsat.
usgs.gov/landsat8.php. For 2013, only five scenes were completely free from atmospheric disturbances
over the study area: 13 April, 16 June, 3 August, 4 September and 7 November. These images, having
a spatial resolution of 30 m, were already geometrically and atmospherically corrected, which allowed
the computation of NDVI from bands 4 and 5.

A high spatial resolution image of the study olive grove was derived from Google Earth
(https://earth.google.com/). This corresponded to an IKONOS pan-fused image collected on 5 June
2013, having a nominal spatial resolution around 1 m.
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2.2.2. Ground Observations

Plant transpiration was assessed by means of five Granier-type sensors [31], measuring hourly
sap flow. The sensors were radially inserted 20 mm depth into the stems of five olive trees, at 1.3 m
height [32]. Hourly data were collected and further elaborated to retrieve daily transpiration rate for the
years 2011–2013. The collection periods were not continuous, and covered only about 110 days during
the 2013 growing season. In this year the sensors of one olive tree were affected by malfunctioning,
and their measurements were excluded from the current analysis.

Soil water content (SWC) was measured on a hourly basis by means of Decagon 10HS
sensors [33,34], installed at a depth of 30 cm within the study olive orchard at the beginning of
2013. The sensor positioning (i.e., the distance from trees and the depth in the soil) was defined taking
into account plant age and development, with the aim to detect the most active olive tree rooting
zone [35–37]. Consequently, the collected measurements were assumed to be representative of the
mean water content in the soil layer most explored by olive tree roots.

2.3. Data Processing

2.3.1. Pre-Processing of Meteorological and Soil Data

The interpolated daily values of minimum and maximum temperature were used to
drive a version of the Hargreaves-Samani (HS) equation suitable for Mediterranean coastal
environments [38,39] and predict daily potential evapotranspiration (ET0, mm·day−1).

The soil water capacity and the wilting point were derived from the available soil map of Tuscany
following [40].

2.3.2. Estimation and Assessment of Olive Tree Transpiration

A full description of the NDVI-Cws method is provided in [22]. In summary, NDVI is used to
estimate fractional vegetation cover (FVC), which indicates the quantity of green transpiring biomass
sensitive to long-term water stress. The estimation of FVC allows the independent simulation of crop
transpiration and soil evaporation, which are both limited by short-term water stress. The effect of this
stress is accounted for by two meteorological factors, which are applied to vegetated and un-vegetated
cover fractions for predicting actual transpiration (TrA) and evaporation (EvA), respectively, according
to the formulas:

TrA = ET0× FVC×KcVeg×Cws (1)

EvA = ET0× (1− FVC)×KcSoil×AW (2)

where KcVeg and KcSoil are maximum Kc values of vegetation and soil, respectively, and Cws
(Coefficient of water stress) and AW (Available Water) are the two meteorological factors. As explained
by [22], KcVeg is differentiated for woody and non-woody vegetation types (0.7 and 1.2, respectively),
while KcSoil is fixed to 0.2. Cws and AW are calculated from the ratio between precipitation and ET0

cumulated over periods which vary from one to two months depending on the prevalence of woody
components. The ranges of Cws and AW are 0.5–1 and 0–1, respectively, based on the assumption
that the presence of green leaf biomass as seen by NDVI/FVC implies a certain transpiration level,
while this is not the case for soil evaporation [22]. The two water stress factors are always activated for
rainfed ecosystems, while for the other ecosystems these factors are deactivated in summer when a
FVC higher than 0.6 indicates the provision of water by irrigation or from a water table.

The low spatial resolution of the MODIS NDVI imagery (250 m) was not sufficient to properly
characterize the study olive orchard and to identify its main components, olive trees and grasses.
Thus, specific integration methods were applied and tested to obtain annual NDVI datasets with
the needed spatial and temporal details. First, all collected MODIS images were pre-processed as
described in [41] and 16-day NDVI values were extracted from the pixel corresponding to the study
olive orchard. Next, the same orchard was identified in the five available Landsat OLI images. The
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OLI NDVI values of the corresponding pixel were used to linearly recalibrate the 16-day MODIS NDVI
values for the whole growing season. As a third trial, the spatially variable endmember identification
method proposed by [42] was applied to extract separate NDVI values of olive trees and grasses.
This method estimates different NDVI endmembers for each low-resolution image pixel based on a
higher spatial resolution map and was currently applied as described in [43]. In this way 16-day NDVI
endmembers of olive trees and grasses were predicted, whose average was adjusted to the five OLI
NDVI values as done previously.

All mentioned 16-day profiles were temporally interpolated on a daily basis, filtered by a
11-day moving average and converted into corresponding daily FVC values by applying the linear
equation proposed by [44], with NDVImin = 0.15 and NDVImax = 0.9 [22]. The estimation of olive tree
transpiration through Equation (1) was first driven by the original MODIS NDVI values (MODIS_Orig)
and the MODIS NDVI values recalibrated on the OLI imagery (MODIS + OLI). In both these cases,
a KcVeg equal to 1 was utilized, which is intermediate between those of trees and grasses. Next, the
same estimation was carried out separately for olive trees and grasses using the respective recalibrated
NDVI endmembers (MODIS_EM1+OLI and MODIS_EM2+OLI, respectively) and relevant maximum
Kc (i.e., 0.7 and 1.2).

Olive tree transpiration was simulated also by the use of a widely known bio-geochemical model,
BIOME-BGC [45]. This model, which simulates all main processes of terrestrial ecosystems based on
site descriptors of vegetation and soil and daily meteorological data, was tuned for olive groves in
Tuscany by [43]. The tuned model version was applied using the available meteorological and ancillary
data to simulate daily olive tree transpiration for 2013.

The transpiration estimates obtained using the NDVI-Cws method driven by different NDVI
values (MODIS_Orig, MODIS+OLI and MODIS_EM1+OLI) and BIOME-BGC were assessed versus
the available sap flow measurements. In all cases the accuracy of the estimates was summarized using
common statistics, i.e., the correlation coefficient (r), the root mean square error (RMSE) and the mean
absolute error (MBE).

2.3.3. Estimation and Assessment of Site SWC

The total olive grove ETA was predicted by summing the TrA and corresponding EvA estimates
obtained by Equations (1) and (2) using the described NDVI datasets (i.e., MODIS_Orig, MODIS+OLI
and MODIS_EM+OLI). Estimated ETA was then used to drive a simplified simulation of site water
balance through the following formula [46]:

Vi = Vi-1 + Preci−ETAi−DPi (3)

where Vt = volumetric soil water content, ranging from the soil surface to the depth explored by
plant roots; Prect = precipitation; ETAt = actual evapotranspiration; DPt = deep percolation or runoff,
assumed to equal the outflow occurring when water exceeds the maximum soil water holding capacity;
all referred to day i.

The maximum soil water holding capacity was determined considering a soil depth equal to the
olive tree rooting depth (1 m) and a field capacity derived from the available soil map (330 cm3·cm−3).
The daily Vt estimates obtained were converted into fractional SWC (dimensionless) by division for
this maximum soil water holding capacity. The final SWC estimates were assessed through comparison
with the daily SWC obtained by aggregating the hourly measurements; these comparisons were
summarized using the same accuracy statistics as above.

3. Results

3.1. Estimation of Olive Tree Transpiration

The daily precipitation and ET0 values obtained from interpolated data are shown in Figure 3.
Rainfall almost stops from the end of May till the end of September, while the highest ET0 is reached
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in summer. This creates a critical water deficit period from June to September, in coincidence with the
Mediterranean dry season. This pattern is clearly visible from the evolution of the Cws water stress
factor, which was computed accumulating rainfall and ET0 over a period intermediate between those
of trees and grasses (45 days). Cws is close to 1 in winter and early spring, when there is no water
stress. Next, there is a first Cws drop followed by a partial recovery due to May rainfalls. The water
stress factor then drops close to the minimum (0.5) from early July to early October, when heavy fall
rainfalls occur. A similar evolution characterizes the water stress factor used to estimate Ev, (AW),
which, however, ranges from 0 to 1.Remote Sens. 2016, 8, x FOR PEER  7 of 14 
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Figure 3. Daily rainfall, potential evapotranspiration and Cws derived from the interpolated
meteorological data during 2013 (* and ** correspond to rainfall of 98 and 47 mm, respectively);
ET0 is computed by applying the HS method, while Cws is obtained from a simplified site water
budget as described in [22,41].

The multitemporal NDVI profiles of Figure 4 show the effects of this seasonal meteorology on the
vegetation activity of the olive orchard. The original MODIS NDVI time series shows a reduction of
green leaf biomass and vegetation activity in late spring-summer, followed by a recovery in autumn.
The summer minimum is amplified by the five OLI images, which have higher early-spring and
autumn NDVI values. Similar trends are evident in the NDVI endmembers of olive trees and grasses,
but with different intensities; olive trees, in fact, exhibit NDVI values higher than grasses during the
whole year and are less affected by summer water stress.
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Figure 4. NDVI values of 2013 obtained from MODIS and OLI data ((MODIS_Orig and OLI_Orig,
respectively) and integrating OLI with the original MODIS data (MODIS+OLI) and the MODIS
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The daily TrA estimates obtained using the three NDVI data series are shown in Figure 5.
The estimates from the original MODIS data show a clear early-spring peak, which is followed
by a decrease and a subsequent recovery due to the precipitation fallen in May (Figure 3). During
summer there is a clear TrA decrease, followed by a fall recovery after the typical rainy events. The
same evolution is shown when using the MODIS+OLI data series, but in this case, the peak TrA values
are higher than those obtained previously (i.e., 3.6 mm·day−1 versus 2.9 mm·day−1).

Remote Sens. 2016, 8, x FOR PEER  8 of 14 

 

in late spring and summer. A clear recovery is evident after the first rainy events at the end of 
summer. 

 
Figure 5. Daily olive tree transpiration estimated by the NDVI-Cws method driven by the different 
NDVI multitemporal profiles (the data series are the same as in Figure 4, see text for details). 

Table 1 reports the accuracy statistics of the MODIS_Orig and MODIS+OLI TrA time series 
compared to the sap flow measurements. A marked TrA underestimation occurs when using the 
original and recalibrated MODIS data series, due to the previously noted low NDVI values. A good 
prediction is instead obtained when using the olive tree NDVI endmember (Figure 6). In this last 
case, the transpiration estimates show the same temporal evolution of the measurements and fall 
almost completely within the standard errors of these. Accordingly, a high correlation coefficient and 
low errors are obtained (r = 0.818, RMSE = 0.40 mm·day−1, MBE = −0.12 mm·day−1). 

The accuracy obtained by BIOME-BGC is also reported in Table 1. The model estimates are again 
less accurate than those produced by the optimally driven NDVI-Cws method, due to both a poorer 
reproduction of daily variability and a greater underestimation of TrA. 

Table 1. Accuracy statistics of the daily olive transpiration estimates obtained applying the NDVI-
Cws method with different NDVI datasets and BIOME-BGC (see text for details) (** = highly 
significant correlation, p < 0.01). 

Data/Model r RMSE (mm·day−1) MBE (mm·day−1) 
MODIS_Orig 0.269 ** 1.09 −0.89 
MODIS+OLI 0.415 ** 0.87 −0.49 
BIOME-BGC 0.548 ** 0.91 −0.41 

 
Figure 6. Daily olive tree transpiration measured by sap-flow (average and standard error from the 
four sampled trees) and estimated by the NDVI-Cws method driven by the olive tree NDVI 
endmembers. Data are collected, from 19 April to 8 August 2013 (** = highly significant correlation, p 
< 0.01). 

Figure 5. Daily olive tree transpiration estimated by the NDVI-Cws method driven by the different
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When feeding the method with the NDVI endmembers, the TrA of grasses, which are more
responsive than trees to soil water availability, reaches high values early in spring and is then rapidly
affected by water shortage. Grass TrA is always very low during summer and recovers only in October.
On the contrary, olive trees show a smaller TrA peak in early spring, but higher TrA values in late
spring and summer. A clear recovery is evident after the first rainy events at the end of summer.

Table 1 reports the accuracy statistics of the MODIS_Orig and MODIS+OLI TrA time series
compared to the sap flow measurements. A marked TrA underestimation occurs when using the
original and recalibrated MODIS data series, due to the previously noted low NDVI values. A good
prediction is instead obtained when using the olive tree NDVI endmember (Figure 6). In this last case,
the transpiration estimates show the same temporal evolution of the measurements and fall almost
completely within the standard errors of these. Accordingly, a high correlation coefficient and low
errors are obtained (r = 0.818, RMSE = 0.40 mm·day−1, MBE = −0.12 mm·day−1).

The accuracy obtained by BIOME-BGC is also reported in Table 1. The model estimates are again
less accurate than those produced by the optimally driven NDVI-Cws method, due to both a poorer
reproduction of daily variability and a greater underestimation of TrA.

Table 1. Accuracy statistics of the daily olive transpiration estimates obtained applying the NDVI-Cws
method with different NDVI datasets and BIOME-BGC (see text for details) (** = highly significant
correlation, p < 0.01).

Data/Model r RMSE (mm·day−1) MBE (mm·day−1)

MODIS_Orig 0.269 ** 1.09 −0.89
MODIS+OLI 0.415 ** 0.87 −0.49
BIOME-BGC 0.548 ** 0.91 −0.41
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Data are collected, from 19 April to 8 August 2013 (** = highly significant correlation, p < 0.01).

3.2. Estimation of SWC

The available SWC measurements show a temporal evolution which is strictly related to the
previous meteorological and eco-physiological observations (Figure 7). In particular, soil water is first
depleted during a spring dry spell and partly recovers after the May rainfall events. Next, a long SWC
minimum is present in summer as a consequence of the scarce rainfall and high ET0 occurring in this
season. In particular, SWC decreases close to the wilting point (0.15) during summer, and quickly
recovers in September after heavy rainfall events.
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The results of the SWC simulations carried out using the ETA estimates driven by different NDVI
values (MODIS_Orig, MODIS+OLI, MODIS_EM+OLI) are shown in Figure 7. The use of MODIS_Orig
NDVI leads to a clear SWC overestimation, which can be logically attributed to a corresponding strong
ETA underestimation. This problem is mostly overcome by the use of MODIS+OLI NDVI, which
produces an only marginal SWC overestimation, still likely due to a ETA underestimation. These ETA

patterns basically confirm the previous findings about olive tree transpiration, which are variably
underestimated (Table 1).
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The visual analysis of the Ikonos image indicated an olive tree canopy cover fraction equal to 0.33.
The ETA estimates obtained separately for olive trees and grasses were therefore combined using cover
proportions of 0.33 and 0.67, respectively. The use of these estimates in the SWC simulation produces
an accuracy which is nearly equivalent to that obtained using MODIS+OLI NDVI (Figure 7).

4. Discussion

The method proposed by [22] to predict ETA based on MODIS NDVI and ancillary data is proven
to be straightforward and operational. That method, in fact, relies on the well-known concept of crop
coefficient (the ratio of ETA to ET0) to constrain daily ET0 accounting for both short-term and long-term
effects of water stress. In particular, NDVI is used as an estimate of transpiring green biomass, and is
complemented by a meteorological factor, which accounts for short-term water stress. The obtained
transpiration is finally combined with soil evaporation, which is predicted for un-vegetated cover
fractions constrained by a similar water stress factor.

A major strength of this semi-empirical approach is the direct consideration of a biophysical
parameter, green foliage density, which is related to ETA under a given set of meteorological conditions.
Indeed, the canopies of olive trees have numerous gaps through which the grass layer is visible,
which makes ETA related to the light absorbed by both vegetation layers as measured by NDVI.
NDVI alone, however, cannot fully constrain ET0 in the simulation of ETA. Olive trees, in fact, have
a fine control over water loss, and rainfed trees are overall more coupled to the atmosphere than
well-watered ones [27], with the result that transpiration is less dependent on the radiation term and
more dependent on the vapor pressure deficit (and temperature). Actually, vapor pressure deficit acts
in synergy with soil water availability in determining stomata closure and, more generally, total plant
resistance, which is a major regulator of transpiration. This enhances the importance of including in the
simulation of ETA meteorological factors accounting for short-term variations in atmospheric and soil
water status [13,41]. When water stress lasts for relatively long periods, the effect of these factors adds
to that of green biomass (NDVI/FVC) reduction, leading to a significant decrease in predicted ETA.

The advantages and limitations of this method applied to relatively large, homogeneous,
single-layer agricultural or forest ecosystems are widely discussed in [22]. The application of the
method to spatially fragmented, multi-layer agricultural ecosystems is more complex and requires
addressing additional challenges. The first is due to the spatial size of these ecosystems, which is
commonly far below the resolution of MODIS NDVI data (i.e., about 6 ha). Most European olive
groves, vineyards and, more generally, tree plantations are, in fact, distributed over irregular terrain
and occupy small unit areas (around 0.1–0.5 ha). This spatial resolution issue can be addressed by the
integration of MODIS data with higher spatial resolution imagery, such as that taken by Landsat 8 OLI.
This is confirmed by the current experimental results, which indicate that such integration yields a
clear improvement in the prediction of TrA and SWC.

The second issue instead requires more complex processing operations aimed at separating
the NDVI contributions of the different ecosystem components, i.e., trees and grasses. The NDVI
endmember identification method currently applied, whose details are fully provided in [42], is suitable
to address this issue. This method requires a map of olive canopy cover over larger areas, which can
be derived from the combination of high and very high resolution imagery [43]. The method is capable
of providing NDVI values more informative on olive tree functions than those obtained from the entire
olive orchard, which leads to a decisive improvement in the prediction of olive tree transpiration.
This is particularly important for assessing the effect of water stress on olive trees while minimizing
the influence of other ecosystem components. This effect is a major determinant of olive fruit yield and
must therefore be primarily taken into consideration for regional scale monitoring applications [43].
The same olive tree transpiration estimates better reproduce the sap flow measurements than those
obtained from a model of ecosystem processes, BIOME-BGC, which was specifically tuned for this
ecosystem type. This finding is mainly related to an imperfect simulation of water stress effects by
this model, which does not consider direct estimates of green leaf biomass such as those derivable
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from NDVI data [45]. The separate treatment of olive trees and grasses, however, does not improve the
simulation of SWC over the entire olive orchard. In this case a correction of the MODIS multitemporal
NDVI profiles with the OLI NDVI values is sufficient to account for the small size of the olive orchard.

The current simulation experiment remains partly affected by problems of under-sampling in
space and time due to the satellite imageries used. These limitations could be overcome by the
availability of remote sensing products having enhanced spatial and temporal features, which could
theoretically be obtained by new satellite missions and/or acquired from aircraft or proximal remote
sensing platforms. In the near future, however, such products will hardly have all characteristics
desirable for monitoring the fragmented, multi-layer ecosystems which are typical of Mediterranean
areas (i.e., sub-meter spatial resolution and daily revisiting time). This supports the relevance of
developing and applying suitable spatio-temporal NDVI integration methods, which is an open field
of investigation [47].

All simulations performed are obviously also dependent on method and data used to estimate
ET0. ET0 was currently predicted by the HS equation, which is often preferred to other more
complicated methods since it requires only maximum and minimum air temperatures and is reasonably
accurate [48]. The ET0 estimated by the HS equation have been compared to the ET0 computed with
the Penman-Monteith equation (PM-ET0) equation [11], using full datasets, or to grass lysimeter data,
indicating that the HS method performs well in most climatic regions, with the exception of humid
areas [49–52]. The used version of the HS equation was suggested for Mediterranean coastal areas
by [39], who recognized its superiority over other temperature methods in water limited ecosystems.
The current lack of meteorological measurements collected in the olive grove prevented an accuracy
assessment versus an independent dataset. The used meteorological data, however, can be presumed
to be very accurate, due to the proximity (few hundred meters) of the olive grove to a ground station,
which is included in the regional network used by DAYMET. This algorithm, in fact, utilizes a weighting
function, which gives preferential consideration to the spatially closest training stations, thus reducing
errors in proximity of these [53]. This property is expected to be particularly effective for rainfall, which
is characterized by high spatial variability and is obviously very influential on site water balance.

Similar observations can be made for the information about major soil characteristics, such as
depth and texture, which determine the maximum soil water holding capacity and are essential for the
correct calculation of site water balance. This information is not easy attainable at the desirable spatial
scale (i.e., few tens meters), due to the high geographical variability in soil characteristics, which is
particularly common in heterogeneous Mediterranean landscapes [46]. This high variability depends
both on main pedogenetic factors, such as lithology, physiography, climate, vegetation, etc., and on
relevant processes. Soil mapping, based on the soil-landscape paradigm [54], identifies and delineates
land units similar for factors and pedogenetic processes and, thus, partly succeeds in addressing
soil variability at different spatial scales. However, local uncertainty can have a detrimental effect
on the accuracy of the site water balance. Further approximations are brought by the current use of
a simplified soil water budget equation, which does not take into account several relevant factors
(surface runoff, infiltration rate, multi-layer soil structure, etc.). A more complex modeling approach,
however, would presumably bring little benefit to the scope of the paper, where the SWC simulations
are used for inter-comparing the impacts of different NDVI datasets.

5. Conclusions

This study concerned the integration of ground and remote sensing datasets with different spatial
and temporal properties for simulating the water balance of a complex Mediterranean agro-ecosystem.
These datasets have been used to drive an ETA modeling method, NDVI-Cws, which was originally
conceived for the operational monitoring of water dynamics at the ecosystem level. In view of this,
some methodological adaptations were required to address the peculiar spatial structure of olive
groves. The study, however, did not comprise a site specific calibration of the method, which would
have improved its accuracy at the expense of its general applicability.
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The results obtained support the capability of the NDVI-Cws method to estimate daily olive tree
TrA and site SWC in complex, multi-layer Mediterranean agricultural ecosystems. This capability is
critically dependent on the quality of the used drivers, particularly concerning the NDVI datasets.
The spatially fragmented and two-layer nature of olive groves, in fact, requires a separate estimation
of NDVI for trees and grasses, which can be obtained by applying proper statistical operations to
satellite imagery with different spatio-temporal properties. This confirms the importance of NDVI
datasets having these properties, whose availability will be expanded by foreseen satellite missions
(e.g., Sentinels 2 and 3).
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